Optimization 0000000000000

Market maker simulations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 00

High-Frequency Trading in a Limit Order Book

Sasha Stoikov (with M. Avellaneda)

Cornell University

February 9, 2009

Optimization 00000000000000

Market maker simulations

Conclusion 00

The limit order book

0	rder Boo Shares	OK PRICE	0	rder Boo Shares	OK PRICE
•	22	69900		22	69900
	17	69800		17	69800
s	140	69700	s	140	69700
ASKS	24	69600	ASKS	24	69600
	6	69500	4	6	69500
	42	69300		32	69300
BIDS	42	69200	BIDS	42	69200
	41	69100		41	69100
	32	69000		32	69000
+	21	68900	+	21	68900

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

troduction	Optimization	Estimation	Market maker simulations	0
•0	0000000000000	000000000000000000	00000000	0

Motivation

Int ⊙€

- Two main categories of traders
 - 1 Liquidity taker: buys at the ask, sell at the bid
 - 2 Liquidity provider: waits to buy at the bid, sell at the ask

Introduction	
000	

Market maker simulations

▲日▼▲□▼▲□▼▲□▼ □ ののの

Conclusion 00

Motivation

- Two main categories of traders
 - 1 Liquidity taker: buys at the ask, sell at the bid
 - 2 Liquidity provider: waits to buy at the bid, sell at the ask
- How do liquidity providers (market makers) make money?
 - 1 Making the bid/ask spread
 - 2 Managing their risk by adjusting the quantities/prices

Introduction	
000	

Market maker simulations

▲日▼▲□▼▲□▼▲□▼ □ ののの

Conclusion 00

Motivation

- Two main categories of traders
 - 1 Liquidity taker: buys at the ask, sell at the bid
 - 2 Liquidity provider: waits to buy at the bid, sell at the ask
- How do liquidity providers (market makers) make money?
 - 1 Making the bid/ask spread
 - 2 Managing their risk by adjusting the quantities/prices
- Factors affecting the optimal bid/ask prices:
 - Inventory risk
 - The stock mid price: S
 - The stock volatility: σ
 - The risk aversion: γ
 - The liquidity: $\lambda(\cdot)$

Introduction	
000	

Estimation

Market maker simulations

▲日▼▲□▼▲□▼▲□▼ □ ののの

Conclusion 00

Motivation

- Two main categories of traders
 - 1 Liquidity taker: buys at the ask, sell at the bid
 - 2 Liquidity provider: waits to buy at the bid, sell at the ask
- How do liquidity providers (market makers) make money?
 - 1 Making the bid/ask spread
 - 2 Managing their risk by adjusting the quantities/prices
- Factors affecting the optimal bid/ask prices:
 - 1 Inventory risk
 - The stock mid price: S
 - The stock volatility: σ
 - The risk aversion: γ
 - The liquidity: $\lambda(\cdot)$
 - Adverse selection risk

ntroduction	Optimization 000000000000	Estimation 000000000000000000000000000000000000	Market maker simulations	Conclusion

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Outline

In

- The maximal utility problem
- Optimal bid and ask prices
- Some approximations
- P&L profiles of the optimal strategy

ntroduction	Optimization	Estimation	Market maker simulations	Conclusion
⊙●	000000000000	00000000000000		00

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Outline

Int oc

- The maximal utility problem
- Optimal bid and ask prices
- Some approximations
- P&L profiles of the optimal strategy
- Estimation
 - Modeling the order book
 - Estimating model parameters
 - Steady state quantities

troduction	Optimization	Estimation	Market maker simulations	Conclusion
⊙●	000000000000	00000000000000		00

▲日▼▲□▼▲□▼▲□▼ □ のので

Outline

Int oc

- The maximal utility problem
- Optimal bid and ask prices
- Some approximations
- P&L profiles of the optimal strategy
- Estimation
 - Modeling the order book
 - Estimating model parameters
 - Steady state quantities
- 3 Simulation
 - A market making algorithm
 - Autocorrelation in the order flow

troduction	Optimization	Estimation	Market maker simulations	Conclusion
⊙●	000000000000	000000000000000		00

▲日▼▲□▼▲□▼▲□▼ □ のので

Outline

Int

- The maximal utility problem
- Optimal bid and ask prices
- Some approximations
- P&L profiles of the optimal strategy
- Estimation
 - Modeling the order book
 - Estimating model parameters
 - Steady state quantities
- 3 Simulation
 - A market making algorithm
 - Autocorrelation in the order flow
- 4 Conclusion

Market maker simulations

Conclusion 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The mid price of the stock

Brownian motion

 $dS_t = \sigma dW_t$

Optimization •0000000000000

Market maker simulations

Conclusion 00

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

The mid price of the stock

Brownian motion

$$dS_t = \sigma dW_t$$

• Geometric Brownian motion

$$\frac{dS_t}{S_t} = \sigma dW_t$$

Optimization •000000000000

Market maker simulations

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The mid price of the stock

Brownian motion

$$dS_t = \sigma dW_t$$

• Geometric Brownian motion

$$\frac{dS_t}{S_t} = \sigma dW_t$$

 Trading at the mid-price is not allowed. However, we may quote limit orders p^b and p^a around the mid-price.

Market maker simulations

Conclusion 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The arrival of buy and sell orders

• Controls: p_t^a and p_t^b

Market maker simulations

▲日▼▲□▼▲□▼▲□▼ □ のので

Conclusion 00

The arrival of buy and sell orders

- Controls: p_t^a and p_t^b
- Number of stocks bought N_t^b is Poisson with intensity $\lambda^b(p^b-s)$, an increasing function of p^b
- Number of stocks sold N_t^a is Poisson with intensity $\lambda^a(p^a s)$, a decreasing function of p^a

Market maker simulations

▲日▼▲□▼▲□▼▲□▼ □ のので

Conclusion 00

The arrival of buy and sell orders

- Controls: p_t^a and p_t^b
- Number of stocks bought N_t^b is Poisson with intensity $\lambda^b(p^b-s)$, an increasing function of p^b
- Number of stocks sold N_t^a is Poisson with intensity $\lambda^a(p^a-s)$, a decreasing function of p^a
- The wealth in cash

$$dX_t = p^a dN_t^a - p^b dN_t^b$$

The inventory

$$q_t = N_t^b - N_t^a$$

Market maker simulations

Conclusion 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The market maker's objective

• Maximize exponential utility

$$u(s, x, q, t) = \max_{p_t^a, p_t^b, 0 \le t \le T} E_t \left[-e^{-\gamma(X_T + q_T S_T)} \right]$$

Market maker simulations

Conclusion 00

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ の Q @

The market maker's objective

• Maximize exponential utility

$$u(s, x, q, t) = \max_{p_t^a, p_t^b, 0 \le t \le T} E_t \left[-e^{-\gamma (X_T + q_T S_T)} \right]$$

• Mean/variance objective

$$v(s, x, q, t) = \max_{p_t^a, p_t^b, 0 \le t \le T} E_t \left[(X_T + q_T S_T) \right] - \frac{\gamma}{2} Var \left[(X_T + q_T S_T) \right]$$

Optimization

Market maker simulations

Conclusion 00

.

The market maker's objective

• Maximize exponential utility

$$u(s, x, q, t) = \max_{p_t^a, p_t^b, 0 \le t \le T} E_t \left[-e^{-\gamma (X_T + q_T S_T)} \right]$$

• Mean/variance objective

$$v(s, x, q, t) = \max_{p_t^a, p_t^b, 0 \le t \le T} E_t \left[(X_T + q_T S_T) \right] - \frac{\gamma}{2} Var \left[(X_T + q_T S_T) \right]$$

• Infinite horizon exponential utility

$$w(x, s, q) = \max_{p_t^a, p_t^b} E\left[\int_0^\infty -\exp(-\omega t)\exp(-\gamma(X_t + q_t S_t))dt\right]$$

Optimization

Market maker simulations

Conclusion 00

.

The market maker's objective

• Maximize exponential utility

$$u(s, x, q, t) = \max_{p_t^a, p_t^b, 0 \le t \le T} E_t \left[-e^{-\gamma(X_T + q_T S_T)} \right]$$

• Mean/variance objective

$$v(s, x, q, t) = \max_{p_t^a, p_t^b, 0 \le t \le T} E_t \left[(X_T + q_T S_T) \right] - \frac{\gamma}{2} Var \left[(X_T + q_T S_T) \right]$$

• Infinite horizon exponential utility

$$w(x,s,q) = \max_{p_t^a, p_t^b} E\left[\int_0^\infty -\exp(-\omega t)\exp(-\gamma(X_t+q_tS_t))dt\right]$$

• Other objectives: minimizing shortfall risk, value at risk, etc...

Estimation

Market maker simulations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Conclusion 00

The HJB equation

u(x, s, q, t) solves

$$\begin{cases} u_{t} + \frac{1}{2}\sigma^{2}u_{ss} \\ + \max_{p^{b}}\lambda^{b}(p^{b})\left[u(s, x - p^{b}, q + 1, t) - u(s, x, q, t)\right] \\ + \max_{p^{a}}\lambda^{a}(p^{a})\left[u(s, x + p^{a}, q - 1, t) - u(s, x, q, t)\right] = 0 \\ u(S, x, q, t) = -\exp(-\gamma(x + qS)). \end{cases}$$

Optimization 00000000000

Market maker simulations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 00

The indifference or reservation prices

Definition

The indifference bid price r^b (relative to a book of q stocks) is given implicitly by the relation

$$u(x - r^{b}(s, q, t), s, q + 1, t) = u(x, s, q, t).$$

The indifference ask price r^a solves

$$u(x+r^a(s,q,t),s,q-1,t)=u(x,s,q,t).$$

Optimization 00000000000

Market maker simulations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 00

The optimal quotes

Theorem

The optimal bid and ask prices p^b and p^a are given by the implicit relations

$$p^b = r^b - rac{1}{\gamma} \ln \left(1 + \gamma rac{\lambda^b}{rac{\partial \lambda^b}{\partial p}}
ight)$$

and

$$p^{a} = r^{a} + \frac{1}{\gamma} \ln \left(1 - \gamma \frac{\lambda^{a}}{\frac{\partial \lambda^{a}}{\partial p}} \right).$$

Optimization 0000000000000

Market maker simulations

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Conclusion 00

The "Frozen-Inventory" Approximation

• If we assume there is no arrival of orders

$$\begin{aligned} v(x,s,q,t) &= E_t[-\exp(-\gamma(x+qS_T)] \\ &= -\exp(-\gamma x)\exp(-\gamma qs)\exp\left(\frac{\gamma^2 q^2 \sigma^2(T-t)}{2}\right) \end{aligned}$$

Optimization 000000000000

Market maker simulations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 00

The "Frozen-Inventory" Approximation

• If we assume there is no arrival of orders

$$\begin{aligned} v(x,s,q,t) &= E_t [-\exp(-\gamma(x+qS_T)] \\ &= -\exp(-\gamma x)\exp(-\gamma qs)\exp\left(\frac{\gamma^2 q^2 \sigma^2(T-t)}{2}\right) \end{aligned}$$

• The indifference price of a stock, given an inventory of *q* stocks is

$$r(s,q,t) = s - q\gamma\sigma^2(T-t)$$

Optimization 000000000000

Market maker simulations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 00

The "Frozen-Inventory" Approximation

• If we assume there is no arrival of orders

$$\begin{aligned} v(x,s,q,t) &= E_t [-\exp(-\gamma(x+qS_T)] \\ &= -\exp(-\gamma x)\exp(-\gamma qs)\exp\left(\frac{\gamma^2 q^2 \sigma^2(T-t)}{2}\right) \end{aligned}$$

• The indifference price of a stock, given an inventory of *q* stocks is

$$r(s,q,t) = s - q\gamma\sigma^2(T-t)$$

• This is an approximation to r^a and r^b for the problem with order arrivals

Optimization 00000000000000 Estimation

Market maker simulations

Conclusion 00

The "Econophysics" Approximation

1 The density of market order size is

 $f^Q(x) \varpropto x^{-1-\alpha}$

Gabaix et al. (2006)

Optimization 000000000000000

Market maker simulations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 00

The "Econophysics" Approximation

1 The density of market order size is

 $f^Q(x) \varpropto x^{-1-\alpha}$

Gabaix et al. (2006)

2 The market impact of market orders

 $\Delta p \propto \ln(Q)$

Potters and Bouchaud (2003)

Optimization 000000000000000 Estimation

Market maker simulations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 00

The "Econophysics" Approximation

1 The density of market order size is

 $f^Q(x) \varpropto x^{-1-\alpha}$

Gabaix et al. (2006)

2 The market impact of market orders

 $\Delta p \propto \ln(Q)$

Potters and Bouchaud (2003)

3 Constant frequency of order arrivals Λ

Optimization 000000000000000 Estimation

Market maker simulations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 00

The "Econophysics" Approximation

1 The density of market order size is

 $f^Q(x) \varpropto x^{-1-\alpha}$

Gabaix et al. (2006)

2 The market impact of market orders

 $\Delta p \propto \ln(Q)$

Potters and Bouchaud (2003)

- ${f 3}$ Constant frequency of order arrivals ${f \Lambda}$
 - Imply that arrival rates are exponential

$$\lambda^a = A \exp(-k(p^a - s))$$
 and $\lambda^b = A \exp(-k(s - p^b))$

Introduction	Optimization	Estimation	Market maker simulations	Conclusion
000	00000000	00000000000000		00

The optimal quotes

• Step one: the indifference price

$$r(s,q,t) = s - q\gamma\sigma^2(T-t)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Introduction	Optimization	Estimation	Market maker simulations	Conclusion
000	0000000000000	00000000000000	00000000	00

The optimal quotes

• Step one: the indifference price

$$r(s,q,t) = s - q\gamma\sigma^2(T-t)$$

• Step two: the bid/ask quotes

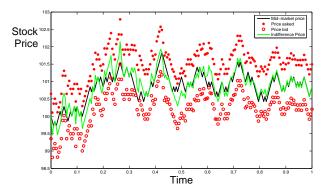
$$p^b = r - rac{1}{\gamma} \ln \left(1 + rac{\gamma}{k}
ight)$$

and

$$p^a = r + rac{1}{\gamma} \ln \left(1 + rac{\gamma}{k}
ight).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

k is a measure of the liquidity of the market.


Optimization

Market maker simulations

Conclusion 00

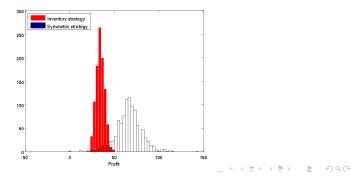
Numerical results

A stock price simulation for $\gamma=0.1$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Optimization

Market maker simulations


Conclusion 00

Numerical results

P&L profile for $\gamma = 0.5$

Strategy	Spread	Profit	std(Profit)	std(Final q)
Inventory	1.15	33.92	4.72	1.88
Symmetric	1.15	66.20	14.53	9.06

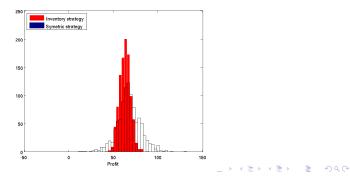
Table: 1000 simulations with $\gamma = 0.5$

Introduction	
000	

Optimization

Estimation

Market maker simulations


Conclusion 00

Numerical results

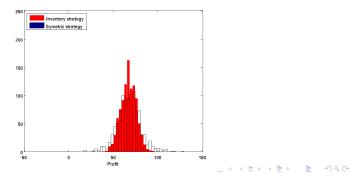
P&L profile for $\gamma = 0.1$

Strategy	Spread	Profit	std(Profit)	std(Final q)
Inventory	1.29	62.94	5.89	2.80
Symmetric	1.29	67.21	13.43	8.66

Table: 1000 simulations with $\gamma = 0.1$

Optimization

Market maker simulations


Conclusion 00

Numerical results

P&L profile for $\gamma = 0.01$

Strategy	Spread	Profit	std(Profit)	std(Final q)
Inventory	1.33	66.78	8.76	4.70
Symmetric	1.33	67.36	13.40	8.65

Table: 1000 simulations with $\gamma = 0.01$

Optimization

Estimation

A market order

0	Order Book			0	rder Bo	ok
	SHARES	PRICE			SHARES	PRICE
•	22	69900			22	69900
	17	69800			17	69800
S	140	69700	-	s	140	69700
ASKS	24	69600		ASKS	24	69600
	6	69500			6	69500
	42	69300			32	69300
BIDS	42	69200		BIDS	42	69200
	41	69100			41	69100
	32	69000			32	69000
+	21	68900		•	21	68900

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Market maker simulations

Conclusion 00

A limit order

Order Book				
	SHARES	PRICE		
	13	69900		
	17	69800		
S	22	69700		
ASKS	25	69600		
	2	69500		
	28	69300		
BIDS	31	69200		
	29	69100		
	27	69000		
+	25	68900		

	Order Book				
		SHARES	PRICE		
		13	69900		
	_	17	69800		
	BIDS ASKS	22	69700		
		25	69600		
		2	69500		
		28	69300		
		33	69200		
		29	69100		
		27	69000		
	•	25	68900		

Optimization

Estimation

A limit order

C	order Boo	ok		0	rder Bo	ok		
SHARES PRICE			SHARES		PRICE			
1	22	69900			22	69900		
	17	69800			17	69800		
s	140	69700		s	140	69700		
ASKS	24	69600		ASKS	24	69600		
	6	69500			6	69500		
	42	69300			4	69400		
BIDS	42	69200		BIDS	42	69300		
	41	69100					42	69200
	32	69000			41	69100		
+	21	68900		•	32	69000		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Market maker simulations

Conclusion 00

A cancellation

0	Order Book SHARES PRICE			Order Book SHARES PRIC		
	13	69900			10	69900
	17	69800			17	69800
S	22	69700			22	69700
ASKS	25	69600		ASKS	25	69600
	2	69500		4	2	69500
	28	69300			28	69300
BIDS	31	69200	BIDS	SOIS	33	69200
	29	69100		-	29	69100
	27	69000			27	69000
•	25	68900		+	25	68900

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々で

Introduction 000	Optimization 000000000000	 Market maker simulations	Conclusion 00

Assumptions

 Market buy (resp. sell) orders arrive at independent, exponential times with rate μ,

troduction	Optimization	Estimation	Market maker simulations	Conclusion
00	000000000000	000000000000000000000000000000000000000	00000000	00

Assumptions

- Market buy (resp. sell) orders arrive at independent, exponential times with rate μ,
- Limit buy (resp. sell) orders arrive at a distance of *i* ticks from the opposite best quote at independent, exponential times with rate $\lambda(i)$,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ion	Optimization	Estimation
	000000000000	000000000000000000000000000000000000000

Market maker simulations

▲日▼▲□▼▲□▼▲□▼ □ のので

Conclusion 00

Assumptions

- Market buy (resp. sell) orders arrive at independent, exponential times with rate μ,
- Limit buy (resp. sell) orders arrive at a distance of *i* ticks from the opposite best quote at independent, exponential times with rate $\lambda(i)$,
- Cancellations of limit orders at a distance of *i* ticks from the opposite best quote occur at a rate proportional to the number of outstanding orders: if the number of outstanding orders at that level is *x* then the cancellation rate is θ(*i*)*x*.

ion	Optimization	Estimation
	000000000000	000000000000000000000000000000000000000

Market maker simulations

▲日▼▲□▼▲□▼▲□▼ □ のので

Assumptions

- Market buy (resp. sell) orders arrive at independent, exponential times with rate μ,
- Limit buy (resp. sell) orders arrive at a distance of *i* ticks from the opposite best quote at independent, exponential times with rate $\lambda(i)$,
- Cancellations of limit orders at a distance of *i* ticks from the opposite best quote occur at a rate proportional to the number of outstanding orders: if the number of outstanding orders at that level is *x* then the cancellation rate is θ(*i*)*x*.
- The sizes of market and limit orders are random.

on	Optimization	Estimation
	000000000000	000000000000000000000000000000000000000

Market maker simulations

Conclusion 00

Assumptions

- Market buy (resp. sell) orders arrive at independent, exponential times with rate μ,
- Limit buy (resp. sell) orders arrive at a distance of *i* ticks from the opposite best quote at independent, exponential times with rate $\lambda(i)$,
- Cancellations of limit orders at a distance of *i* ticks from the opposite best quote occur at a rate proportional to the number of outstanding orders: if the number of outstanding orders at that level is *x* then the cancellation rate is θ(*i*)*x*.
- The sizes of market and limit orders are random.
- The above events are mutually independent.

Optimization 00000000000000 Market maker simulations

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The simulation pseudocode

At each time step, generate the next event:

• Probability of a market buy order

$$\frac{\mu^{a}}{\mu^{b} + \mu^{a} + \sum_{d} (\lambda^{b}(d) + \lambda^{a}(d)) + \sum_{d} \theta(d) Q_{t}^{b}(d) + \sum_{d} \theta(d) Q_{t}^{a}(d)}$$

Draw order size (in shares) from empirical distribution.

Optimization 000000000000 Market maker simulations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 00

The simulation pseudocode

At each time step, generate the next event:

• Probability of a market buy order

$$\frac{\mu^{a}}{\mu^{b} + \mu^{a} + \sum_{d} (\lambda^{b}(d) + \lambda^{a}(d)) + \sum_{d} \theta(d) Q_{t}^{b}(d) + \sum_{d} \theta(d) Q_{t}^{a}(d)}$$

Draw order size (in shares) from empirical distribution.

• Probability of a limit buy order *i* ticks away from the best ask

$$\frac{\lambda^{b}(i)}{\mu^{b} + \mu^{a} + \sum_{d} (\lambda^{b}(d) + \lambda^{a}(d)) + \sum_{d} \theta(d) Q_{t}^{b}(d) + \sum_{d} \theta(d) Q_{t}^{a}(d)}$$

Draw order size from empirical distribution

Optimization 000000000000 Market maker simulations

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusion 00

The simulation pseudocode

 Probability of a cancel buy order *i* ticks away from the best ask

$$\frac{\theta(i)Q_t^b(i)}{\mu^b + \mu^a + \sum_d (\lambda^b(d) + \lambda^a(d)) + \sum_d \theta(d)Q_t^b(d) + \sum_d \theta(d)Q_t^a(d)}$$

If there are j orders at that price, cancel one of them with uniform probability.

... same procedure for the sell side of the book.

Optimization 000000000000000 Estimation

Market maker simulations

▲日▼▲□▼▲□▼▲□▼ □ のので

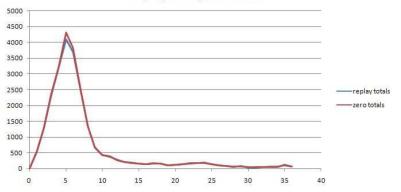
Conclusion 00

The market statistics

The simulation parameters

- Ticker: AMZN
- Number of events (market, limit, cancel): 50.000
- Number of market orders: $\mu^a + \mu^b = 2.371$
- Number of limit orders within a 2 dollar window: $\sum \lambda^{a}(d) + \lambda^{b}(d) = 24.221$
- Number of cancel orders within a 2 dollar window: $\sum_{d} \theta(d)Q_{t}^{b}(d) + \sum_{d} \theta(d)Q_{t}^{a}(d) = 22.613$

Optimization 000000000000000 Estimation


Market maker simulations

Conclusion 00

The market statistics

The distribution of limit orders

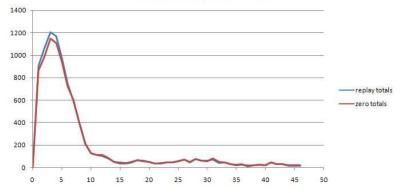
as a function of the distance to the opposite best quote $\lambda(d)$ Order Distance Distribution

replay totals, zero totals

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Optimization 000000000000000 Estimation

Market maker simulations


Conclusion 00

The market statistics

The cancel rates per order

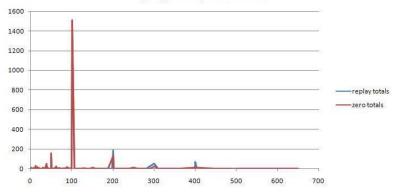
as a function of the distance to the opposite best quote $\theta(d)$ Cancel Rate/Order By Distance

replay totals, zero totals

◆ロト ◆母 ト ◆臣 ト ◆臣 - の々で

Optimization 0000000000000000 Estimation

Market maker simulations


Conclusion 00

The market statistics

The market order size distribution

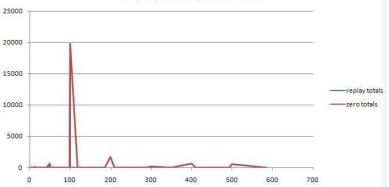
Market Share Distribution

replay totals, zero totals

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Optimization 000000000000000 Estimation

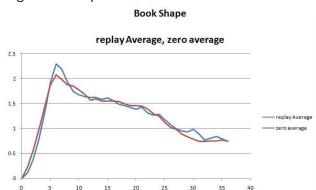
Market maker simulations


Conclusion 00

The market statistics

The limit order size distribution

Limit Share Distribution


replay totals, zero totals

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction 000	Optimization 0000000000000	Estimation ○○○○○○○○○○○○○●○	Market maker simulations	Conclusion 00
The market statistics				
The zero	market			

The average book shape

Introduction 000	Optimization 0000000000000	Estimation ○○○○○○○○○○○○○○●	Market maker simulations	Conclusion
The market statistics				
<u> </u>	-			

The zero market

Sample paths

replay MidPrice, zero MidPrice

・ロト ・聞 ト ・ ヨト ・ ヨト ъ

Optimization 000000000000 Estimation

Market maker simulations

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The individual's statistics

Individual agent parameters

The Trump agent controls inventory by lowering the quotes after he buys, and raising the quotes after he sells. His properties include the following parameters:

- A start time (e.g. right after the book is seeded)
- A premium around the market spread (e.g. bid minus δ_b=2 cents, ask plus δ_a=2 cents)
- A position limit (e.g. 500 shares)
- A lot size (e.g. 100 shares)
- An aggressiveness parameter for inventory control

Optimization 000000000000 Estimation

Market maker simulations

Conclusion 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The individual's statistics

Individual agent pseudocode

Trump agent operates by:

- Condition: If time>start time and Trump does not have two outstanding limit orders
- 2 The action: cancel outstanding orders and submit two limit orders at the prices

$$p_b = m_b - \delta_b + \delta_b rac{q}{ extsf{floor}} * extsf{aggr}$$

and

$$p_a = m_a + \delta_a - \delta_a \frac{q}{ceiling} * aggr$$

where the first term is the market bid or ask, the second term is the bid and ask premium and the third term controls the inventory. If the floor is reached, there is no ask quote. If the ceiling is reached, there is no bid quote.

Introduction 000	Optimization 0000000000000	Estimation 000000000000000	Market maker simulations	Conclusion 00
The individual's stati	stics			
Trump in	Zero			

• Capital= 10,000\$, Position limited to $\pm 40,000$ \$, AMZN price = 79\$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Introduction 000	Optimization 0000000000000	Estimation 00000000000000	Market maker simulations	Conclusion 00
The individual's statis	tics			
Trump in	Zero			

• Capital= 10,000\$, Position limited to $\pm 40,000\$,$ AMZN price = 79\$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

• Agent: Limit 500 shares, Lot size 100 shares, Premium = 4 cents, Aggressiveness = 1

Introduction	Optimization	Estimation	Market maker simulations	Conclusion		
000	0000000000000	000000000000000000000000000000000000000	00000000	00		
The individual's statistic	The individual's statistics					
Trump in Z	<u>Z</u> ero					

- Capital= 10,000\$, Position limited to \pm 40,000\$, AMZN price = 79\$
- Agent: Limit 500 shares, Lot size 100 shares, Premium = 4 cents, Aggressiveness = 1
- Market: 50,000 events in AMZN Zero (roughly 1 hour of clock time)

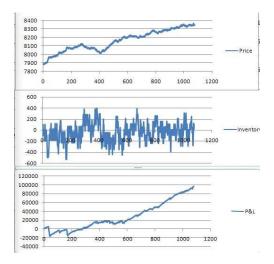
Introduction 000	Optimization 0000000000000	Estimation 000000000000000000000000000000000000	Market maker simulations	Conclusion 00
The individual's stati	stics			
Trump in	Zero			

- Capital= 10,000\$, Position limited to \pm 40,000\$, AMZN price = 79\$
- Agent: Limit 500 shares, Lot size 100 shares, Premium = 4 cents, Aggressiveness = 1
- Market: 50,000 events in AMZN Zero (roughly 1 hour of clock time)
- Results: 82,831 shares traded, 3.3% market participation, 862\$ profit

Introduction 000	Optimization 0000000000000	Estimation 00000000000000	Market maker simulations	Conclusion 00
The individual's statis	stics			
Trump in	Zero			

- Capital= 10,000\$, Position limited to \pm 40,000\$, AMZN price = 79\$
- Agent: Limit 500 shares, Lot size 100 shares, Premium = 4 cents, Aggressiveness = 1
- Market: 50,000 events in AMZN Zero (roughly 1 hour of clock time)
- Results: 82,831 shares traded, 3.3% market participation, 862\$ profit

• (avg premium 4.8cents) * 82,831= 3,964 \$


Introduction 000	Optimization 0000000000000	Estimation 00000000000000	Market maker simulations	Conclusion 00
The individual's statis	stics			
Trump in	Zero			

- Capital= 10,000\$, Position limited to \pm 40,000\$, AMZN price = 79\$
- Agent: Limit 500 shares, Lot size 100 shares, Premium = 4 cents, Aggressiveness = 1
- Market: 50,000 events in AMZN Zero (roughly 1 hour of clock time)
- Results: 82,831 shares traded, 3.3% market participation, 862\$ profit

- (avg premium 4.8cents) * 82,831= 3,964 \$
- Adverse selection loss = 3,101 \$

Introduction 000	Optimization 000000000000	Estimation 000000000000000	Market maker simulations	Conclusion
The individual's statistics	i			

Trump in Zero

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ æ

Introduction 000	Optimization 0000000000000	Estimation 000000000000000	Market maker simulations	Conclusion 00
Autocorrelation in the o	order flow			
The rho m	arket			

• The zero market picks the type of market orders (BUY/SELL) independently of past market orders

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Introduction 000	Optimization 0000000000000	Estimation 000000000000000	Market maker simulations	Conclusion 00
Autocorrelation in the	order flow			
The rho m	narket			

- The zero market picks the type of market orders (BUY/SELL) independently of past market orders
- Empirically, the market data has long sequences of BUY (resp. SELL) orders

Introduction 000	Optimization 0000000000000	Estimation 00000000000000	Market maker simulations	Conclusion 00
Autocorrelation in the	order flow			
The rho m	narket			

- The zero market picks the type of market orders (BUY/SELL) independently of past market orders
- Empirically, the market data has long sequences of BUY (resp. SELL) orders

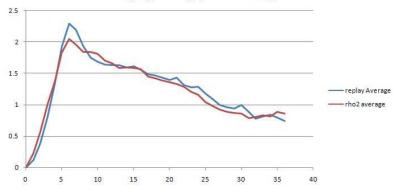
• We implement autocorrelation:

Introduction 000	Optimization 0000000000000	Estimation 00000000000000	Market maker simulations	Conclusion 00
Autocorrelation in the c	order flow			
The rho m	arket			

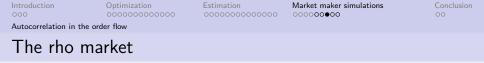
- The zero market picks the type of market orders (BUY/SELL) independently of past market orders
- Empirically, the market data has long sequences of BUY (resp. SELL) orders
- We implement autocorrelation:
 - **1** Label $X_i = 1$ for a buy order and $X_i = 0$ for a sell order
 - 2 Run a regression

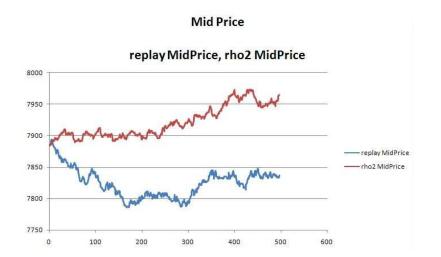
$$X_{i} = \alpha + \beta_{1} X_{i-1} + \dots + \beta_{10} X_{i-10}$$

3 In the simulation, enforce


$$P(X_{i} = 1) = \alpha + \beta_{1}X_{i-1} + \dots + \beta_{10}X_{i-10}$$

▲日▼▲□▼▲□▼▲□▼ □ のので


Introduction	Optimization	Estimation	Market maker simulations	Conclusion		
000	0000000000000	000000000000000000000000000000000000000	000000000	00		
Autocorrelation in the order flow						
The rho n	narket					


Book Shape

replay Average, rho2 average

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ○日 ○ のへの

Introduction 000	Optimization 0000000000000	Estimation 00000000000000	Market maker simulations	Conclusion 00		
Autocorrelation in the order flow						
Trump in	Rho					

• Agent: Premium = 4 cents, Limit 500 shares, Lot size 100 shares, Aggressiveness = 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction 000	Optimization 0000000000000	Estimation 000000000000000	Market maker simulations	Conclusion 00		
Autocorrelation in the order flow						
Trump in F	Rho					

• Agent: Premium = 4 cents, Limit 500 shares, Lot size 100 shares, Aggressiveness = 1

• Market: 50,000 events in Rho

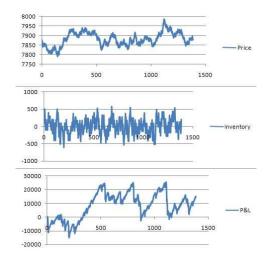
Introduction 000	Optimization 0000000000000	Estimation 000000000000000000000000000000000000	Market maker simulations	Conclusion 00			
Autocorrelation in the order flow							
Trump in	Rho						

- Agent: Premium = 4 cents, Limit 500 shares, Lot size 100 shares, Aggressiveness = 1
- Market: 50,000 events in Rho
- Results: 103,862 shares traded, 4.15% market participation, 151\$ profit

Introduction 000	Optimization 0000000000000	Estimation 000000000000000	Market maker simulations	Conclusion 00			
Autocorrelation in the order flow							
Trump in	Rho						

- Agent: Premium = 4 cents, Limit 500 shares, Lot size 100 shares, Aggressiveness = 1
- Market: 50,000 events in Rho
- Results: 103,862 shares traded, 4.15% market participation, 151\$ profit

• (avg premium 4.7cents) * 103,862=4,853\$


Introduction 000	Optimization 0000000000000	Estimation 000000000000000000000000000000000000	Market maker simulations ○○○○○○○●○	Conclusion
Autocorrelation in the	e order flow			
Trump in	Rho			

- Agent: Premium = 4 cents, Limit 500 shares, Lot size 100 shares, Aggressiveness = 1
- Market: 50,000 events in Rho
- Results: 103,862 shares traded, 4.15% market participation, 151\$ profit

- (avg premium 4.7cents) * 103,862=4,853\$
- Adverse selection loss = 4701 \$

Introduction	Optimization	Estimation	Market maker simulations	Conclusion
000	000000000000	00000000000000	00000000	00
Autocorrelation in the or	rder flow			

Trump in Rho

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへの

Introduction	Optimization	Estimation	Market maker simulations	Conclusion
000	0000000000000	000000000000000		●0
Summary				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Prices depends on the trader's inventory

Introduction	Optimization	Estimation	Market maker simulations	Conclusion
000	0000000000000	000000000000000		●0
Summary				

- Prices depends on the trader's inventory
- The indifference price relative to the inventory

$$r(s,q,t) = s - q\gamma\sigma^2(T-t)$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Introduction	Optimization	Estimation	Market maker simulations	Conclusion
000	000000000000	000000000000000000	00000000	•0

Summary

- Prices depends on the trader's inventory
- The indifference price relative to the inventory

$$r(s,q,t) = s - q\gamma\sigma^2(T-t)$$

• Compute the optimal bid and ask prices

$$p^{b} = r - rac{1}{\gamma} \ln \left(1 + \gamma rac{\lambda^{b}}{rac{\partial \lambda^{b}}{\partial p}}
ight) \qquad p^{a} = r + rac{1}{\gamma} \ln \left(1 - \gamma rac{\lambda^{a}}{rac{\partial \lambda^{a}}{\partial p}}
ight)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Introduction	Optimization	Estimation	Market maker simulations	Conclusion
000	000000000000	000000000000000000000000000000000000000	00000000	•0

Summary

- Prices depends on the trader's inventory
- The indifference price relative to the inventory

$$r(s,q,t) = s - q\gamma\sigma^2(T-t)$$

• Compute the optimal bid and ask prices

$$p^{b} = r - rac{1}{\gamma} \ln \left(1 + \gamma rac{\lambda^{b}}{rac{\partial \lambda^{b}}{\partial p}}
ight) \qquad p^{a} = r + rac{1}{\gamma} \ln \left(1 - \gamma rac{\lambda^{a}}{rac{\partial \lambda^{a}}{\partial p}}
ight)$$

- Order book simulations:
 - We model an order book as a continuous-time Markov chain
 - The simulation environment allows us to test market makers in different market environments

Optimization 000000000000

Market maker simulations

Conclusion O•

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Current and future research

1 Generalize the market maker's problem for

- Multiple stocks
- Multiple options

Optimization 000000000000

Market maker simulations

Conclusion O

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Current and future research

1 Generalize the market maker's problem for

- Multiple stocks
- Multiple options
- 2 Problems where the market maker can
 - Adjust quantities at the bid and the ask
 - Submit orders strategically

Optimization 000000000000

Market maker simulations

▲日▼▲□▼▲□▼▲□▼ □ のので

Conclusion O

Current and future research

1 Generalize the market maker's problem for

- Multiple stocks
- Multiple options
- 2 Problems where the market maker can
 - Adjust quantities at the bid and the ask
 - Submit orders strategically
- **3** Modeling adverse selection:
 - Jumps in stock price
 - · Correlation between the stock returns and inventory positions
 - Autocorrelation in the sign of market orders